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Abstract

Fréchet means on manifolds are minimizers of expected squared distance, just as their Euclidean
kin. On manifolds, Fréchet means for most distributions feature a classical asymptotic Gaussian cen-
tral limit theorem with

√
n-rate, except for some distributions, some of which are known on spheres.

These slower and non-Gaussian rates are called smeary rates. Here we first describe exhaustively all
smeary distributions on circles, comprising not only power smeariness, but also logarithmic smeari-
ness. Then we make the concept of finite sample smeariness (FSS) precise and show for the circle
that FSS affects all distributions that are spread on both sides beyond an open half circle. An analog
results holds for tori. We statistically quantify the scale of FSS and find two different qualities: If
asymptotically, the sample Fréchet variance remains strictly above the population Fréchet variance,
we speak of Type I FSS, this is the case, e.g., for all (!) von Mises distributions. Else, we have Type
II FSS, e.g., for distributions with support excluding the antipode of its mean. For both types of FSS
it turns out that the nominal level of asymptotic quantile based tests for the circular mean is higher
than the true level. Simulations indicate, however, that suitably designed bootstrap tests preserve
the level. For illustration of the relevance of FSS in real data, we apply our method to directional
wind data from two European cities. It turns out that quantile based tests, not correcting for FSS,
find a multitude of significant wind changes. This multitude condenses to a few years featuring
significant wind changes, when our bootstrap tests are applied, correcting for FSS.

Key words and phrases: Fréchet means, smeariness, one- and two-sample tests, nonparametric asymptotic
quantile based tests, bootstrap tests, directional data on circles and tori, wind directions.
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1 Introduction

Generalizing the expected value for random variables X on arbitrary metric spaces (M,d), Fréchet (1948)
proposed to consider minimizers of the expected squared distance:

argmin
x∈M

F (x) where F (x) = E
[
d(x,X)2

]
. (1)

Under mild assumptions, Ziezold (1977) derived strong asymptotic consistency for

argmin
x∈M

Fn(x) where Fn(x) =
1

n
d(x,Xj)

2 (2)

from an i.i.d. sample X1, . . . , Xn ∼ X. Under stronger conditions, among others, under uniqueness of
the minimizer µ of (1), called a Fréchet population mean, and that M is a manifold, Bhattacharya and
Patrangenaru (2005) derived, in a local chart near µ, a central limit theorem for a measurable selection
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µ̂n of (2), called a Fréchet sample mean, with a Gaussian limiting distribution and the usual rate of
n−1/2.

For the subsequent decade, it was unclear, whether any other limiting distributions were possible,
possibly with different rates. Then Hotz and Huckemann (2015) discovered certain distributions on the

circle, featuring rates of n−
1

2(r+1) , for all integer r ∈ {0, 1, . . .}, with powers of Gaussians as limiting
distributions. Such rates have been called smeary of order r, where zero-order smeary corresponds
to the classical CLT. Recently, Eltzner and Huckemann (2019); Eltzner (2019); Tran (2019) derived
distributions on spheres of arbitrary dimension, featuring smeariness of order r = 2.

This present article shows that, in contrast to näıve belief, initially also held by the authors, the
phenomenon of smeariness extends to a wide class of distributions manifesting as finite sample smeariness
(FSS), namely that, depending on the distribution, there are integers n− < n+ and 0 < α− < α+ < 1
such that

E[d(µ̂n, µ)2] is of order between
1

nα+
and

1

nα−
for n ∈ {n−, n− + 1, . . . , n+} (3)

cf. Figure 1.

n− n+ n0

C+n

r+
r++1

−

C−n

r−
r−+1

+

n

nE[d(µ̂n, µ)2]

Figure 1: Scaled variance curve n 7→ nE[d(µ̂n, µ)2] (blue) of an exemplary distribution
featuring FSS. Along [n−, n+] the curve is between the lower (C−n

α−) and upper (C+n
α+)

bounds (dashed), satisfying the condition C+n
α+

− ≤ C−n
α−
+ , and for n ≥ n0 it is below the

horizontal upper bound (dashed). The exponents relate to power smeariness 0 < r− < r+
via α− = r−

r−+1 and α+ = r+
r++1 as detailed in Section 2 and Definition 3.1.

We will make the above informal definition (3) of FSS precise and, on the circle, we will show that
FSS affects all distributions which are spread on both sides beyond an open half circle. In particular,
FSS affects all distributions with nowhere vanishing density such as all von Mises families, Bingham
families, etc., an overview of many more such distributions is given by Mardia and Jupp (2000). Upon
closer inspection, we find two types of FSS. All of the distributions mentioned before feature FSS of Type
I. Distributions with FSS and zero density at the antipode of their Fréchet mean µ, feature FSS of Type
II. This is the case, for instance, when resampling from samples that are spread around beyond a half
circle.

Further, we show how FSS affects quantile based one- and two-sample tests such that their nominal
size may be drastically different from their effective size, cf. Table 1.

Suitably designed bootstrap tests, however, seem to preserve the size rather well. In application to
wind direction data we see that asymptotic quantile based two-sample test, on a circle and a torus, due
to FSS present in the data, give a wrong impression of the extent of extreme wind change events for
two continental European cities. Using bootstrap tests which preserve the nominal level, extreme wind
events reduce to a few concise events, which in particular make the years 2003, 2005 and 2017, 2018
exceptional (the latter strongly), hinting towards a trace of recent climate change.

We begin our exposition by a new and rather exhaustive framework describing all types of smeariness
possible on the circle and the torus, choosing a tradeoff between generality and technical simplicity. In
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λ 0 1/4 1/2 3/4
n = 100 0.333 0.446 0.564 0.676
n = 1000 0.349 0.496 0.604 0.768

Table 1: Effective size under the null hypothesis of equal von-Mises mixture distributions as
defined in (9) (with κ = 3, α = 1/2 and varying λ) of the quantile-based two-sample Test
4.1(ii) for equality of Fréchet means with nominal size 0.05.

this framework, order smeariness as discovered before by Hotz and Huckemann (2015) turns out to be a
special case of arbitrary power smeariness and there is a new and different phenomenon of logarithmic
smeariness that simultaneously features limiting behaviors of two different regimes. Then, we rigorously
define FSS in terms of power smeariness, explore its two qualitatively different types and provide for an
estimator of the scale of FSS including a statistical significance test. We continue with exploring the
quantile based test by Bhattacharya and Patrangenaru (2005) and an implementation of the bootstrap
test, which was also suggested by Bhattacharya and Patrangenaru (2005). We corroborate via simulations
that the bootstrap test preserves the nominal size, also in the presence of FSS. Then we apply both tests
to climate data. We conclude with an outlook to higher dimensions and list open problems that arise
from our findings.

In the following we consider only distributions with unique population means µ. In case of nonunique
sample means, we agree to pick a unique element from a realisation of an independent uniform variable
on the set of sample means. Obviously, this is a measurable selection.

2 Smeariness on the Circle and the Torus

The circle is the space S1 = [−π, π) with −π and π identified and the usual arc length distance

d(x, y) = min
{
|x− y|, 2π − |x− y|

}
.

Theorem 2.1 (Central Limit Theorem on the Circle). Let n ∈ N and consider i.i.d. random elements
X1, . . . , Xn ∼ X on S1 with unique Fréchet population mean µ = 0, Fréchet sample mean µ̂n and
Euclidean variance E[X2], that feature a continuous density f on (π− δ, π)∪ [−π,−π+ δ) w.r.t. the arc
length measure for some δ > 0. Then, for n→∞, we have

(i) in case of f(−π) = limx↘−π f(x) = limx↗π f(x) < 1
2π , that

√
n µ̂n

D−→ N

(
0,

E[X2](
1− 2πf(−π)

)2
)

(ii) in case of f(−π + ε) = 1
2π − G

′(ε) + o(G′(ε)) and f(π − ε) = 1
2π − G

′(ε) + o(G′(ε)), with a non-
negative, locally at 0 strictly convex, continuously differentiable function G : [0, δ)→ R≥0 fulfilling
G(0) = G′(0) = 0, that

√
n sign(µ̂n) 2πG(|µ̂n|)

D−→ N
(
0,E[X2]

)
.

Proof. Assertion (i) has been shown by McKilliam et al. (2012); Hotz and Huckemann (2015). For
Assertion (ii), let 0 < x < δ and consider the empirical Fréchet function from (2)

Fn(x) =
1

n

∑
Xj∈[x−π,π)

(Xj − x)2 +
1

n

∑
Xj<x−π

(Xj + 2π − x)2

=
1

n

n∑
j=1

(Xj − x)2 +
4π

n

∑
Xj<x−π

(Xj − x+ π)

3



In consequence, with the Euclidean mean X = 1
n

∑
j=1Xj , almost surely,

1

2
gradFn(x) = x−X − 2π

n

∑
Xj<x−π

1 . (4)

Since

E

 1

n

∑
Xj<x−π

1

 =

∫ x−π

−π
f(t) dt =

∫ x−π

−π

(
1

2π
−G′(π + t) + o(G′(π + t))

)
dt

=
x

2π
−G(x) + o

(
G(x)x

)
,

where the last equality is due to the properties of G, we have for the sum of Bernoulli variables

1

n

n∑
j=1

1{Xj<x−π} =
x

2π
−G(x) + o

(
G(x)x

)
+Op

(√
|x−G(x)|√

n

)
.

In conjunction with the analog argument for −δ < x < 0 we thus obtain from (4) that

√
n

2
gradFn(x) =

√
n(sign(x) 2πG(|x|)−X) + o

(
G(x)x

)
+Op

(√
|x+G(|x|)|√

n

)
. (5)

This yields Assertion (ii) since the above l.h.s. vanishes by definition at x = µ̂n, µ̂n = op(1) due to

Ziezold (1977), and since
√
nX

D−→ N
(
0,E[X2]

)
by the classical Euclidean central limit theorem.

Remark 2.2. The above theorem gives a rather general version for the CLT on S1, balancing between
simplicity and technical generality. In particular, f(−π) > 1

2π is not possible due to Hotz and Huckemann
(2015, Theorem 1). As detailed below, special cases of Theorem 2.1 are power smeariness and logarithmic
smeariness.

Our assumption on local strict convexity of G at 0 is equivalent to G′ being a strictly monotone
increasing function in a neighborhood around 0. In addition, by G(0) = 0 we make sure that

∫ ε
0
G′(x)dx =

G(ε) and that G′(ε) > 0 for all 0 < ε < δ.

Example 2.3 (Power Smeariness). For arbitrary r > 0 consider

dPr(x) =
πr + π − r
πr + π

1[−1/2,1/2](x)dx+
1

2π
·
(

1−
(
π − x

)r)
1[π−1,π)(x)dx

+
1

2π
·
(

1−
(
π + x

)r)
1[−π,−π+1](x)dx .

Symmetry and Hotz and Huckemann (2015, Proposition 1) then yield a unique Fréchet population mean

at µ = 0 with G(ε) = εr+1

2π(r+1) in [0, 1). In consequence

n
1

2(r+1) µ̂n

has a nontrivial limiting distribution, so that µ̂n is power smeary of order r. A special case is power
smeariness of integer order r ∈ {0, 1, 2, . . .} as derived in Hotz and Huckemann (2015).

Corollary 2.4 (Logarithmic Smeariness). For arbitrary r > 0 and suitable cr > 0 consider X1, . . . , Xn
i.i.d.∼ X

on S1 following the probability distribution

dPr(x) = cr · 1[−1/2,1/2](x)dx+ 1[π−1/2,π)(x)
max {1−G′r(π − x), 0}

2π
dx

+ 1[−π,−π+1/2](x)
max {1−G′r(π + x), 0}

2π
dx ,

where Gr(x) = exp(−1/|x|r)1(0,∞)(x) is a smooth function. Then
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(i) µ = 0 is the unique Fréchet population mean, and

(ii) for every Fréchet sample mean µ̂n we have

(a) µ̂n
a.s.−−→ 0,

(b) (log
√
n)

1/r
µ̂n

D−−−→ 1
2 dδ−1 + 1

2 dδ1,

(c) r (log
√
n)

(1+r)/r
(
µ̂n − sign µ̂n

(log
√
n)

1/r

)
D−−−→ signZ · log |Z| with Z ∼ N

(
0, E[X

2]
4π2

)
.

The proof is deferred to the appendix.

Remark 2.5. These results extend at once to the m-torus Tm =
(
S1
)m

=
∏m
i=1[−π, π), m ∈ N, equipped

with the canonical product metric

dTm(x, y) =

√√√√ m∑
i=1

d(x(i), y(i))2, x =

x(1)

...
x(m)

 , y =

 y(1)

...
y(m)

 ∈ Tm ,

because µ ∈ Tm is a minimizer of the population Fréchet function (1) of a random variable X on Tm if
and only if all of its coordinates µ(i) are minimizers of the population Fréchet functions of the marginals
X(i) on the i-th circle, i ∈ {1, . . . ,m}. Notably, every marginal may feature different smeariness.

In consequence, due to Hotz and Huckemann (2015, Corollary 3), for a sample X1, . . . , Xn
i.i.d.∼ X

there are at most nm minimizers of the sample Fréchet function (2). In particular every one of the nm

grid points ((
−π +

2π(2j1 − 1)

2n

)
, . . . ,

(
−π +

2π(2jm − 1)

2n

))
, j1, . . . , jm ∈ {1, . . . , n}

is a minimizer of the sample Fréchet function of Xj =
(
−π + 2π(j−1)

n

)
(1, . . . , 1)T ∈ Tm, j ∈ {1, . . . , n},

cf. Figure 2. Indeed, their i-th marginal (1 ≤ i ≤ m) is given by the sample X
(i)
j =

(
−π + 2π(j−1)

n

)
,

j ∈ {1, . . . , n} which has exactly n minimizers of its sample Fréchet function which are equally spaced
between the sample points.

−π

−π
2

0

π
2

π

−π −π
2 0 π

2 π

Figure 2: Six sample points (black circles) on the diagonal of the two-torus T2 and their
equally spaced 62 = 36 Fréchet sample means (empty squares), cf. Remark 2.5.
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3 Finite Sample Smeariness (FSS)

For data sampled from nonsmeary (order r = 0 smeariness) distributions that are in some sense near
smeary distributions, for rather large sample sizes n, a rate of d(µ̂n, µ)2 considerably lower than the
usual asymptotic 1/n rate has been observed by Eltzner and Huckemann (2019) on circles and spheres
of arbitrary dimension.

Definition 3.1. The Fréchet population mean µ of a random element X on a metric space (M,d) is
finite sample smeary (FSS) if there are constants C+, C− > 0, K > 0 , 0 < r− < r+ and integers

1 ≤ n− < n+ < n0 satisfying the condition C+n

r+
r++1

− ≤ C−n

r−
r−+1

+ and satisfying for Fréchet sample
means µ̂n that

(i) ∀n ∈ (n−, n+] ∩ N : E
[
d(X,µ)2

]
≤ C−n

r−
r−+1 ≤ nE

[
d(µ̂n, µ)2

]
≤ C+n

r+
r++1 .

(ii) ∀n ∈ (n0,∞) ∩ N : E
[
d(µ̂n, µ)2

]
≤ Kn−1.

Further, if there are C > 0, n0 ≤ nC ∈ N such that

(iii) ∀n ∈ (nC ,∞) ∩ N : E
[
d(µ̂n, µ)2

]
>
(
E
[
d(X,µ)2

]
+ C

)
n−1 then it is Type I FSS,

(iv) else it is Type II FSS.
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II I

Figure 3: Log-log plots of curves of scaled variances (also divided by Euclidean variance σ2),
cf. Figure 1, for varying von Mises mixture distributions (vMmds) defined in (9) in black
(r = 0) and vMmds with a disk cut out of radius r = 0.1, 0.2, π/2 (in fading gray) about
the antipode of the mean, as defined in (10). In the left and middle display, the vMmds
(black) feature Type I FSS, with the dotted line giving the asymptotic scaled variance, the
two vMmds with a disk cut out (gray curves) of radius 0 < r < π/2 feature Type II FSS.
In the right display, the vMmd (black) features smeariness, with theoretical scaled variance
(dotted), the vMmds with a disk cut out (gray curves) of radius 0 < r < π/2 feature Type
II FSS. Only the vMmds with a disk cut out of size r = π/2 (light gray) features no FSS at
all.

The behavior of the scaled variance nE[d(µ̂n, µ)2] in case of FSS is sketched in Figure 1. For n− ≤
n ≤ n+, Definition (i) requires nE

[
d(µ̂n, µ)2

]
to start above the Euclidean variance σ2 = E[(d(X,µ))2]

of the classical Euclidean CLT and to increase at least with some polynomial power nr−/(r−+1) > 0 that
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does not exceed (ensured by the condition) nr+/(r++1) > 0. Asymptotically, guaranteed by (ii), the rate

of E
[
d(µ̂n, µ)2

]
is then the classical 1/n, ruling out smeariness.

Simple cases of FSS on the circle are illustrated for some nonaltered (Type I FSS), introduced in (9),
and altered (Type II FSS) introduced in (10), von Mises mixtures in Figure 3. Indeed, in conjunction
with Theorem 2.1 on the circle, Type I FSS occurs if X features a density f nonvanishing at the antipode
µ of its unique intrinsic mean µ, cf. Definition 3.1 (iii). If the density vanishes at the antipode, Type
II FSS occurs, Definition 3.1 (iv). So in case of Type I FSS, the curve E[(d(µ̂n, µ))2] rises from σ2 to
σ2 (1 − 2πf(µ))−2. In case of Type II FSS, the curve first rises from σ2 and eventually drops down to
σ2.

Depending on the probability distribution near µ, also more complicated versions of increase and
decrease may occur, as Example 3.2 and Figure 4 teach: every pair of bumps of the density near the
antipode may result in a bump of the scaled variance. As before, however, it starts at σ2 and eventually
settles at σ2 (1− 2πf(µ))−2, producing Type I FSS if f(µ) > 0 and Type II FSS else.

Example 3.2. Investigating the relationship between the scaled variance of intrinsic sample means n 7→
nE[d(µ̂n, µ)2] and the density f (t,w) of X near the antipode of the intrinsic population mean µ = 0, let
l ∈ N, w = (w1, . . . , wl) ∈ [0, 1]l, t = (t1, . . . , tl) ∈ [0, π)l with t0 := 0 < t1 < · · · < tl < π and define the

distribution P(t,w)
U by

dP(t,w)
U (x) := k · dδ0(x) +

1

2π
· f (t,w)(x)dx with

f (t,w)(x) :=

{
wi if x ∈ [−π + ti−1,−π + ti) ∪ (π − ti, π − ti−1] for some i ∈ {1, . . . , l}
0 if x ∈ [−π + tl, π − tl],

where k = k(t, w) > 0 is a normalization constant to ensure that P(t,w)
U is a probability measure. In Table

2 we list cases (a) – (e) of parameter choices considered.

(a) (b) (c) (d) (e)

l 1 2 4 2 4
t 1.5 (0.8, 2) (0.1, 0.2, 0.5, 2) (0.8, 2) (0.1, 0.2, 0.5, 2)
w 0.5 (0.5, 1) (0.5, 0.8, 0.0, 1) (0.0, 1) (0.0, 0.85, 0.0, 1)

Type of FSS I I I II II

Table 2: Selected values for the parameters l, t, w and their resulting type of FSS.

In all cases the population mean of P(t,w)
U is unique and located at µ = 0. Whenever the density at the

antipode is strictly between zero and 1/2π we have FSS of Type I. Regardless of the type of FSS, every pair
of bumps in the density near the antipode corresponds to a single bump in the scaled variance curve. In
case of Type I FSS the curve approaches asymptotically a value strictly above the Euclidean variance, in
case of Type II FSS it approaches asymptotically the Euclidean variance. Numerical experiments indicate
that the convergence occurs from below in case of Type I and from above in case of Type II.

Remark 3.3. As Example 3.2 and Figure 4 teach, a distribution may feature FSS of different r−, r+ on
different intervals n−, n+.

On the circle we have a complete characterization of FSS.

Theorem 3.4. Let X be a random variable on the circle S1 with unique Fréchet population mean µ = 0.
Then the following hold.

(i) If the support of X is contained in (−π/2, π/2) then µ is not finite sample smeary.

(ii) If the support of X is contained in [−π/2, π/2] and if X features a density near ±π/2, then µ is
not finite sample smeary.
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Figure 4: Top row: Curves of scaled variances (also divided by Euclidean variance σ2), as
in Figure 3 (here only the horizontal is in log-scale), for each distribution in Table 2 of
Example 3.2. Bottom row: Density part of the corresponding distributions (that comprise a
δ-measure at the origin).

(iii) If PX [−π,−π/2] 6= 0 6= PX [π/2, π) then µ is finite sample smeary if it is not smeary.

Proof. Let X1, . . . , Xn
i.i.d.∼ X. In cases (i) and (ii) we have a.s. that d(Xi, Xj) = |Xi − Xj | for all

1 ≤ i, j ≤ n, so that −π/2 < µ̂n = 1
n

∑n
j=1Xj < π/2 a.s., giving E[d(µ̂n,m)2] = 1

nE[X2] leading to the
absence of FSS.

In case (iii), set n− = 1 and n+ = 2, X = 1
2 (X1 +X2) and x = 1

2 (x1 + x2). Also denote

A0 :=
{
x1, x2 ∈ S1 : |x1 − x2| < π

}
A+ :=

{
x1, x2 ∈ S1 : |x1 − x2| ≥ π , −

π

2
< x < 0

}
A− :=

{
x1, x2 ∈ S1 : |x1 − x2| ≥ π , 0 ≤ x < π

2

}
and dPX(x1, x2) := dPX(x1) dPX(x2). Then (since there can be no mass of X at x = −π, due to Hotz
and Huckemann (2015, Theorem 1))

E[d(µ̂2, µ)2] =

∫
A0

x2 dPX(x1, x2) +

∫
A+

(x+ π)2 dPX(x1, x2) +

∫
A−

(x− π)2 dPX(x1, x2)

=
1

2
E[d(X,µ)2] + π

∫
A+

(π + 2x) dPX(x1, x2) +

∫
A−

(π − 2x) dPX(x1, x2)


By construction, both integrands above are positive. Hence, by hypothesis the two integrals are pos-
itive, yielding nE[d(µ̂n, µ)2] > E[d(X,µ)2] for (all) integer 2 = n ∈ (n−, n+], giving FSS in case of
nonsmeariness.

The following example illustrates Theorem 3.4 with two point masses at or beyond the equator (case
(iii)), or before (case (i)), possibly (in case (iii)), a nonunique sample mean set, of which uniformly at
random, a sample mean is selected.

Example 3.5. Letting ε ∈ [−π/2, π/2) and w ∈ (0, 1/4], define the circular distribution P(ε,w)
E by

dP(ε,w)
E (x) := (1− 2w) · 1[−1/2,1/2](x)dx+ w dδπ/2+ε(x) + w dδ−π/2−ε(x) ,
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Figure 5: Curves of scaled variances (also divided by Euclidean variance σ2), as in Figure

3, for the three types of distributions P(ε,w)
E from Example 3.5 with weight w of point mass

at ±(π/2 + ε). Black: ε = 0.5, dark gray: ε = 0.2, gray: ε = 0, light gray: ε = −0.2. We
have Type II FSS for all values of ε ≥ 0 and no FSS (constant scaled variance) for ε < 0.

which assigns at least half the mass to [−1/2, 1/2] and the rest is evenly distributed close to the equator
at π/2 + ε and −π/2− ε.

For ε < 0 these distribution are supported in (−π/2, π/2) and thus by Theorem 3.4 (i) feature no
FSS.

For ε > 0, in contrast by Theorem 3.4 (iii), they always feature FSS, which is, by Theorem 2.1 (i)
of Type II.

For ε = 0, by the same argument, they also feature FSS of Type II. Indeed, samples featuring only
points at ±π/2 and no others, occurring with positive probability, have nonunique sample means,
namely one closer to 0 and one closer to −π. As agreed, of these with probability 1/2 the one closer
to −π is chosen which accounts for a higher variance than the Euclidean.

Each panel in Figure 5 illustrates the three cases, with larger effect on FSS the larger the weight w of
each of the point masses.

Thus far, we have defined FSS for arbitrary metric spaces. However, we have investigated FSS only
for the circle. These results extend at once to the torus, as in the corollary below. For other spaces,
a generalization is beyond the scope of this paper. Already for spheres, finding examples of smeary
distributions is rather involved, and to date, only two-smeariness could be confirmed by Eltzner and
Huckemann (2019), and they left no doubt that Type I FSS also occurs on spheres. While in the light
of geometrical smeariness introduced by Eltzner (2019), it seems dubious that Type II FSS also exists
on spheres, it seems that Type I FSS is present on all positively curved spaces. For these Afsari (2009)
has shown that the Hessian of the Fréchet function is smaller than its Euclidean equivalent, which is
twice the identity matrix. The CLT by Bhattacharya and Patrangenaru (2005) therefore suggests that
FSS is always present on such spaces except for single point masses. Indeed, corresponding results, even
for small sample size and highly concentrated random variables have recently been derived by Pennec
(2019). Since the magnitude of FSS seems very small in these highly concentrated cases, below we derive
a heuristic for the effect size of FSS.

Corollary 3.6. Let m ∈ N and let X = (X(1), . . . , X(m)) be a random variable on the torus Tm with
unique Fréchet population mean µ = 0. Then the following hold.

(i) If the support of X is contained in (−π/2, π/2)m then µ is not finite sample smeary.
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(ii) If the support of X is contained in [−π/2, π/2]m and if every marginal X(i) (1 ≤ i ≤ m) features
a density near ±π/2, then µ is not finite sample smeary.

(iii) If for a marginal PX(i)

[−π,−π/2) 6= 0 6= PX(i)

[π/2, π) (1 ≤ i ≤ m) then µ is finite sample smeary
if it is not smeary.

In order to heuristically assess the effect of FSS consider random variables X1, . . . , Xn
i.i.d.∼ X on a

metric space (Q, d) with unique population mean µ and unique sample mean µ̂n (in case of nonuniqueness,
take a uniformly random selection as agreed at the end of Section 1) and set

V := F (µ), V̂n := Fn(µ̂n), W := E[d(µ,X)4], Ŵn :=
1

n

n∑
j=1

d(µ̂n, Xj)
4 , (6)

where we assume that the 4-th moment exists. Then, under mild additional assumptions the CLT for
the Fréchet variance by Dubey and Müller (2019) teaches that

√
n(V̂n − V )

D→N
(
0,W − V 2

)
,

where Ŵn − V̂ 2
n is an asymptotically unbiased estimator for W − V 2, that also satisfies

√
n asymptotic

normality.
Further, let B > 0 be a large integer and µ∗b be a mean of an n-out-of-n bootstrap sample of

X1, . . . , Xn for b = 1, . . . , B. Further, let µ̂∗ be the mean of the µ∗1, . . . , µ
∗
B and set

V̂ ∗ :=
1

B

B∑
b=1

d(µ̂∗, µ∗b)
2, Ŵ ∗ :=

1

B

B∑
b=1

d(µ̂∗, µ∗b)
4 . (7)

Then, under absence of smeariness and absence of FSS,
√
B(V̂ ∗ − Vn/n) is approximately normal with

zero expectation and its variance can be estimated by Ŵ ∗ − (V̂ ∗)2. Hence, in this case, with the
standard-normal α-quantile φα we expect that

P

V̂ ∗ > Vn
n

+ φ1−α

√
Ŵ ∗ − (V̂ ∗)2

B

 ≈ α .
Test 3.7. For random variables X1, . . . , Xn on a metric space (Q, d) with sample mean µ̂n, bootstrap
means µ∗1, . . . , µ

∗
B, and their mean µ̂∗, as above and the notation from (6) and (7),

SFSS,n :=
nV̂ ∗

V̂n
(8)

denotes the scale of FSS for sample size n. With the standard normal α-quantile φα, α ∈ [0, 1], reject
the absence of FSS for sample size n at nominal level α if

SFSS,n − 1 > hn,α where hn,α =
nφα√
B

√
Ŵ ∗ − (V̂ ∗)2

V̂n
.

Figure 6 shows simulations for distributions P(3,β,λ,r)
vMm featuring Type I FSS for r = 0 as defined in

(9) and Type II FSS for r > 0 as defined in (10). Indeed for r = π/2, the null hypothesis of absence of
FSS is true and Test 3.7 keeps the level α = 0.05. For Type II FSS, rejection probabilities are almost
one within the regime of FSS (compare with Figure 3). Beyond that regime the null hypothesis is true
again and detected with the correct size. For the von Mises mixture distribution (vMmd) consisting
of only one von Mises distribution (β = 1, left panel, black) with almost no FSS visible in Figure 3,
rejection probabilities increase visibly with sample size. As expected, the power of Test 3.7 increases
with proximity to a smeary distribution (β = 0.5, λ = 0.8683, r = 0, right panel, black), and specifically
in case of Type II FSS also with smaller hole size and proximity to a distribution featuring Type I FSS.
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Figure 6: Empirical rejection probability curves for Test 3.7 with nominal size α = 0.05
(dotted horizontal) for the vMmds from Figure 3. For the vMmds with a disk cut out of size
r = π/2 about the antipode of its mean, which feature no FSS, all of the curves (light gray)
keep the level. For Type II FSS (gray: r = 0.2, dark gray: r = 0.1) rejection probabilities
are almost one within the regime of FSS; beyond, where there is no FSS any more, they
drop back to the nominal size (see Figure 3). Also for the vMmd consisting of only one vMd
(left panel, black) with almost no FSS visible, rejection probabilities increase visibly with
sample size. For Type I FSS (middle, black) and smeariness (right, black), the rejection
probabilities remain one also for higher sample sizes.

4 One- and Two-Sample Tests for Fréchet Means under FSS

We begin with a brief review of the celebrated central limit theorem (CLT) by Bhattacharya and Pa-
trangenaru (2005) for a k-dimensional manifold M and corresponding tests proposed therein. The CLT
states that, under suitable conditions (further clarified in Bhattacharya and Lin (2017); Eltzner and
Huckemann (2019); Eltzner et al. (2019)), in a local chart φ : U → Rk, U ⊂ M , the fluctuation
φ(µ̂n) − φ(µ) of the Fréchet sample mean µ̂n about the Fréchet population mean µ, rescaled with the
square root of sample size

√
n, is asymptotically (for n → ∞) Gaussian with zero mean and covariance

given by
Σ = H−1CH−1 .

Here, C is the population covariance of the gradient of the Fréchet function F from (1) at µ in the local
chart and H is twice the expected value of the Hessian of the Fréchet function at µ in the local chart.
One of the above mentioned conditions is that H be positive definite. In our language, this means that
µ̂n is nonsmeary (i.e., on the circle we have the situation of Theorem 2.1 (i) where H = 1 − 2π f(−π),
as can be derived at once from the argument following (4)).

For mutually independent samples X1, . . . , Xn
i.i.d.∼ X and Y1, . . . , Yn

i.i.d.∼ Y with population Fréchet
means µ(X) and µ(Y ), respectively, and an additional µ0 ∈M , consider the hypotheses

H1
0 : µ(X) = µ0 for the one-sample test,

H2
0 : µ(X) = µ(Y ) for the two-sample test.

Quantile based tests. With a local chart φ : U → Rk where U ⊂M contains µ (for H1
0 ), or µ(X) and

µ(Y ) (for H2
0 ), respectively, Bhattacharya and Patrangenaru (2005) thus suggest to consider the following
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test statistics,

T 1 = n
(
φ(µ̂

(X)
n )− φ(µ)

)T
ĤXĈ

−1
X ĤX

(
φ(µ̂

(X)
n − φ(µ)

)
for the one-sample test,

T 2 = (n+m)
(
φ(µ̂

(X)
n )− φ(µ̂

(Y )
m )

)T
ĤX,Y Ĉ

−1
X,Y ĤX,Y

(
φ(µ̂

(X)
n )− φ(µ̂

(Y )
m )

)
for the two-sample test,

and use χ2
k as their asymptotic approximation under the respective null hypothesis. Here ĤX , ĈX or

ĤX,Y , ĈX,Y are the usual plugin estimators of H and C based on the first sample, or the pooled sample,
respectively, cf. also Bhattacharya and Bhattacharya (2012, Section 5.4.1).

Test 4.1 (Bhattacharya and Patrangenaru (2005); Bhattacharya and Bhattacharya (2012)). For 0 ≤
α ≤ 1 and the 1− α quantile χ2

k,1−α of the χ2 distribution , reject at nominal level α

(i) H1
0 , if T 1 ≥ χ2

k,1−α,

(ii) H2
0 , if T 2 ≥ χ2

k,1−α.

Asymptotically, while both tests are independent of the chart chosen, in general, they do not keep
the level promised.

Proposition 4.2. On the circle, in case of Type I FSS, the Tests 4.1 have asymptotically a size strictly
higher than their nominal size.

Proof. Indeed with the notation of case (i) of Theorem 2.1, if M = S1 is the circle, µ0 = 0, or µ̂(X) = 0 =
µ̂(Y ), respectively, and φ the identity on (−π, π) ⊂ S1, plugin estimators for H−1CH−1 are 1

n

∑n
j=1X

2
j ,

or 1
n+m

∑n
j=1X

2
j + 1

n+m

∑m
j=1 Y

2
j , respectively, cf. Eltzner and Huckemann (2019), whereas H−1CH−1 =

E[X2]
(
1−2πf(−π)

)−2
, or =

(
γE[X2]+(1−γ)E[Y 2]

)(
1−2πf(−π)

)−2
, with n/(n+m)→ γ, respectively,

in case (i) of Theorem 2.1. Hence, with these estimators, in case of Type I FSS, i.e., 0 < f(−π) < 1
2π ,

the asymptotic true level of Tests 4.1 is strictly higher than their nominal level.

Remark 4.3. On the circle, in case of Type II FSS, Tests 4.1 may also have a true size higher than
their nominal size in a range up to rather high sample sizes, as the following simulations in Section 5
show.

Bootstrap based tests have also been proposed by Bhattacharya and Patrangenaru (2005); Bhat-
tacharya and Bhattacharya (2012) where Σ = H−1CH−1 is estimated by bootstrapping from the sam-
ples. As they have not provided detail, in the following, we employ the bootstrap one- and two-sample
tests by Eltzner and Huckemann (2017), for a given level 0 ≤ α ≤ 1.

Resample B ∈ N times n-out-of-n from the sample X1, . . . , Xn and let µ
(X),∗
b be the corresponding

Fréchet sample means for b = 1, . . . , B. Mapping these sample means under φ to a Euclidean space

yields the covariance estimate Σ(X),∗. From another round of resampling obtain new µ
(X),∗
b , set T ∗b =(

φ(µ
(X),∗
b )− φ(µ̂

(X)
n )

)T
(Σ(X),∗)−1

(
φ(µ

(X),∗
b )− φ(µ̂

(X)
n )

)
, b ∈ {1, . . . , B} and determine e∗1−α such that

]{b ∈ {1, . . . , B} : T ∗b ≤ e∗1−α} − 1

B
≤ 1− α ≤

]{b ∈ {1, . . . , B} : T ∗b ≤ e∗1−α}
B

.

Further, set

T 1 =
(
φ(µ̂(X)

n )− φ(µ0

)T
(Σ(X),∗)−1

(
φ(µ̂(X)

n )− φ(µ0

)
.

Similarly, using m-out-of-m sampling with replacement from Y1, . . . , Ym, obtain a bootstrap covari-
ance estimate Σ(Y ),∗. Now, set A = Σ(X),∗ + Σ(Y ),∗. This choice of A, and not using the pooled
variance, proves to be more robust, cf. Huckemann and Eltzner (2020). Then, from another round of

sampling obtain µ
(X),∗
b and µ

(Y ),∗
b , set d

(X),∗
b = φ(µ̂

(X),∗
b )− φ(µ̂

(X)
n ), d

(Y ),∗
b = φ(µ̂

(Y ),∗
b )− φ(µ̂

(Y )
m ), define

T ∗b =
(
d
(X),∗
b − d(Y ),∗

b

)T
A−1

(
d
(X),∗
b − d(Y ),∗

b

)
, b ∈ {1, . . . , B} and determine f∗1−α such that

]{b ∈ {1, . . . , B} : T ∗b ≤ f∗1−α} − 1

B
≤ 1− α ≤

]{b ∈ {1, . . . , B} : T ∗b ≤ f∗1−α}
B

.
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Further, set

T 2 =
(
φ(µ̂(X)

n )− φ(µ̂(Y )
m

)T
A−1

(
φ(µ̂(X)

n )− φ(µ̂(Y )
m

)
.

Tests 4.4 (Bootstrap Based). With the notation above, for 0 ≤ α ≤ 1, reject at level α

(i) H1
0 , if T 1 ≥ e∗1−α,

(ii) H2
0 , if T 2 ≥ f∗1−α.

Again, asymptotically, both tests are independent of the chart chosen.

Remark 4.5. Simulations in Section 5 depicted in Figures 7 and 8 show that the Tests 4.4 keep the
nominal level α = 0.05 fairly well, in particular for Type I FSS. Upon (very) close inspection, for Type
II FSS, the Tests 4.4 may be slightly too conservative, for Type I FSS too liberal, indicating that a
nonsymmetric bootstrap may be more accurate. Investigating this effect is left for future research beyond
the scope of this paper.

5 Simulations

On S1, as usual identified with [−π, π), we consider von Mises mixtures with antipodal modes with
respect to arc length measure:

dPκ,β,λvMm(x) := β
exp (κ cos(x))

I0(κ)
dx+ (1− β)

exp (λ cos(x+ π))

I0(λ)
dx for κ, λ ≥ 0, β ∈ [0, 1], (9)

where I0(·) is the modified Bessel function of the first kind of order 0, e.g., Mardia and Jupp (2000, p.

36). A given von Mises mixture dPκ,β,λvMm may attain mean(s) at 0 or π or even at {−t, t} for t ∈ (0, π).
Furthermore, we define for r ≥ 0 the function cutting out and mirroring a disk of radius r about −π:

ζr : S1 → S1, p 7→


p if p ∈ [−π + r, π − r)
p+ π if p ∈ [−π,−π + r)

p− π if p ∈ [π − r, π)

For the von Mises mixture Pκ,β,λvMm we then denote the push-forward measure under ζr by

Pκ,β,λ,rvMm := ζr∗ P
κ,β,λ
vMm , (10)

which preserves all mass except for that in a disk of radius r about −π, which is mirrored. Recall that by
Theorem 3.4, all of the Pκ,β,λ,rvMm with unique mean µ = 0 and r < π/2− ε for some ε > 0 feature FSS (if
they are not smeary themselves), which is of Type II if and only if r > 0. For the following simulations
we selected parameters as described in Table 3. All of them give unique means at µ = 0, none of which
is smeary. Only the nearby P3,0.5,λ,0

vMm is smeary (power smeary of order 2) for λ ≈ 0.8683.
In Figures 7 and 8 we compare the power functions at nominal level α = 0.05 of the quantile tests

(gray lines, Test 4.1) to the power functions of the bootstrap tests (black lines, Test 4.4). For the one-

sample tests (Figure 7) we consider simulations of Pκ,β,λ,rvMm and rotated null hypotheses µ0 ∈ [−π, π), for

the two sample-tests (Figure 8) we consider two simulations of Pκ,β,λ,rvMm that are rotated with respect to
one another by the angle p ∈ [−π, π). Random variables from von Mises distributions were generated
using the R-package circular (Lund et al., 2017).
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κ 3 3 3
β 1 1/2 1/2
λ 0 0 1/2
r 0.0 0.1 0.0 0.1 0.00 0.1

SFSS,30 1.0 1.0 3.7 3.0 07.2 5.4
SFSS,100 1.0 1.0 4.2 2.7 11.6 6.6
SFSS,300 1.0 1.0 4.4 2.0 15.9 5.6

Table 3: Parameters of Pκ,β,λ,rvM with scales of FSS for simulations for the performance of
Tests 4.1 and 4.4.
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Figure 7: Rejection probabilities for H1
0 for varying µ0 ∈ [−π, π) under quantile based tests

(Test 4.1, gray) and bootstrap based tests (Test 4.4, black) at nominal level 5% (dotted
horizontal) with one sample of size n = 30 (top row), n = 100 (middle row), and n = 300
(bottom row). The solid lines represent samples which were generated from mixed von Mises

distributions Pκ,β,λ,rvMm , i.e., r = 0. The dashed lines correspond to samples from Pκ,β,λ,rvMm

where all elements closer to −π than r = 0.1 were mirrored. Table 3 gives an overview of
parameters.

With increasing scale of FSS (see Table 3) we see that the quantile tests (gray) become more and
more liberal while the bootstrap tests (black) maintain the correct level. In particular, the quantile based
tests perform poorly in the presence of considerable Type I FSS, in consequence of the scaled variance
of intrinsic sample means nE[d(µ̂n, µ)2] being larger than the Euclidean variance σ2. Upon very close
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inspection, in case of Type II FSS (dashed lines, r > 0) we see that the bootstrap tests may be slightly
too conservative. Conversely, in case of Type I FSS (solid lines, r = 0) the bootstrap tests may be
slightly to liberal. Both effects may be due to a systematic bias, cf. Remark 4.5.
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Figure 8: Rejection probabilities for H2
0 over angle p ∈ [−π, π) between µ(X) and µ(Y ) under

quantile based test (Test 4.1, gray) and bootstrap based test (Test 4.4, black) at nominal level
5% (dotted horizontal) with two samples from the same distribution of size n = 30 (top row),
n = 100 (middle row), and n = 300 (bottom row) but where the latter sample is rotated by p.
The solid lines represent samples which were generated from mixed von Mises distributions
Pκ,β,λ,rvMm , i.e., r = 0. The dashed lines correspond to samples from Pκ,β,λ,rvMm where all elements
closer to −π than r = 0.1 were mirrored.
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Figure 9: Histograms of Fréchet means of daily wind direction data by meteoblue AG (2020)
for Basel (top) and Göttingen (bottom) for the years 2000 to 2019. The x-axis is divided
into 32 segments with labels N : “North”, E : “East”, S : “South”, and W : “West”,
indicating origin of average wind direction.
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6 Assessing Significant Change of Wind Direction

In application of our methods dealing with FSS, we analyze wind data from Basel and Göttingen (the city
of the authors’ institution) provided by meteoblue AG (2020). For our purpose we consider daily Fréchet
mean wind directions for the years 2000 to 2019 giving for each city 20 samples of two-dimensional
circular data of size n = 365. The respective daily wind directions are illustrated in Figure 9. To assess
a possible effect of climate change, we test for a significant change in wind direction.

For each of these 40 samples we estimated the scale of FSS from (8) with B = 1000, cf. Table 4.
Remarkably, for both cities all of the scales of FSS statistically indicate presence of FSS (p = B−1)
except for Göttingen in the year 2017.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Basel 1.601 4.067 1.542 1.197 32.695 2.683 1.845 2.096 1.676 2.344
Göttingen 3.317 2.734 2.760 3.065 1.492 4.171 1.605 15.493 3.861 8.796

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Basel 5.010 1.775 1.466 3.211 1.491 1.741 1.705 5.229 2.694 2.481
Göttingen 8.003 1.685 4.457 36.365 3.446 3.305 5.636 1.037 1.804 2.592

Table 4: Scale of FSS from (8) for daily Fréchet mean wind directions in Basel and
Göttingen for the years 2000 to 2019. All of these values indicate presence of FSS (with the
lowest p-value possible: p = 10−3) except for Göttingen in the year 2017.

Figure 10: Benjamini-Hochberg corrected test results (above diagonals: Test 4.4, below diag-
onals: Test 4.1) of comparisons of daily Fréchet means of wind direction data for the years
2000 to 2019 for Basel and Göttingen (left), Basel (middle), and Göttingen (right) for a
significance level of 5%.

In consequence, we expect that the quantile based two-sample Test 4.1 will feature a considerably
high error of the first kind as compared to the bootstrap based Test 4.4. For each series of 20 ·19/2 = 190
tests at nominal level α = 0.05 we performed a Benjamini-Hochberg correction, cf. Figure 10.

The first series of tests is performed on the two-torus T2 = S1 × S1 for Basel and Göttingen jointly
(left panel of Figure 10). According to the quantile Test 4.1, a majority of years seem to be significantly
different from a great number of others. Applying the bootstrap Test 4.4 we see this “noise” disappearing,
leaving only the years 2003, 2005, 2017 and 2018 as moderately exceptional, where 2018 appears to be
more exceptional than the other three.
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Looking only at Basel (now testing only on S1, middle panel of Figure 10), Test 4.1 seems to suggest
very clearly that the years 2003, 2017 and 2018 are exceptional. Test 4.4, however, clarifies the picture:
2017 is not exceptional and 2003 and 2018 are only moderately exceptional.

Comparison with Göttingen only (again testing on S1, right panel of Figure 10) shows the “noise”
from Test 4.1 is rooted in Göttingen. Again, Test 4.4 clarifies the picture: only the years 2005, 2017
are mildly exceptional. The year 2018 remains more prominently exceptional. The year 2010, which
appeared almost as strongly exceptional as year 2018 for Test 4.1, is no longer exceptional for Test 4.4.
Notably, 2017 is also exceptional through absence of FSS, cf. Table 4.

In conclusion, using the bootstrap test which preserves the nominal level, the years 2003 and 2018
appear exceptional along with 2005 and 2017. These findings fall well into the climatological context of
central European heat waves linked to exceptional wind constellations (Kornhuber et al. (2019) identify
a recurrent wave-7 wind pattern for the years 2003, 2006, 2015 and 2018). While the 2003 heat wave
occurred in most of Europe, the 2018 heat wave manifested in a climatic dipole: hot and dry north of
the Alps, comparably cool and moist across large parts of Mediterranean, cf. Buras et al. (2019). This
is in agreement with our finding that the wind anomaly of 2018 was more prominent for Göttingen (in
the northern part of Germany), rather than for Basel (edging the southern border of Germany) which is
barely north of the Alps.

In a debate quantifying climate change, its anthropogenic component and future costs, linking to
changes of wind patterns (e.g. McInnes et al. (2011)), our new inferential tools for cyclic data presented
here, warrant a more detailed application in future work.

7 Discussion and Outlook

In this contribution, we have investigated two manifolds with codimension one cut loci, namely circles and
tori and found FSS manifesting in two different types. We expect similar findings for other manifolds
with codimension one cut loci, such as real projective spaces, modeling projective shapes, say, as in
Mardia and Patrangenaru (2005); Hotz et al. (2016). We conjecture that this is, using the language of
Eltzner (2019), a consequence of topological smeariness. On manifolds with higher codimension cut loci,
in the language of Eltzner (2019), for instance on arbitrary spheres, there is the different phenomenon
of geometrical smeariness. We conjecture that this leads to Type I FSS only.

We have demonstrated by simulation that on the circle and the torus, the proposed bootstrap tests
preserve the level fairly well. Motivated by close inspection, we conjecture that a bias correction is
necessary to obtain a corresponding theoretical result. This will be particularly challenging for sample
sizes in the regimes of ascending or descending slopes of FSS, cf. Figures 1 and 4.
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Appendix: Proofs

Proof of Corollary 2.4. Since the density of Pr on (−π,−π + 1/2) ∪ (π − 1/2, π) is strictly smaller
than 1

2π we see that cr >
1
2π . Hence, by Hotz and Huckemann (2015, Propostion 1) there is a unique

Fréchet population mean µ in [−1/2, 1/2], which, by symmetry, is µ = 0. This gives (i) and the strong
law by Ziezold (1977) yields (ii), (a).

Next, plug in x = µ̂n in (5) as done in the proof of Theorem 2.1, to obtain

√
n · sign(µ̂n) exp(−1/|µ̂n|r) =

√
n

2π
X + oP (1) .

Subjecting both sides above to y 7→ sign y · log(|y|) 1R\{0}(y) gives

sign(µ̂n)

(
log
√
n− 1

|µ̂n|r

)
= sign(X) log

∣∣∣∣√n2π
X + oP (1)

∣∣∣∣
= sign(X) log

∣∣∣∣√n2π
X

∣∣∣∣+ oP (1) .

For the last equality, we have used 2π√
nX

= OP (1) and log
(
|1 + oP (1)|

)
= oP (1). Setting Ln =

sign(X) log
∣∣∣√n2π X∣∣∣, proceed to

sign(µ̂n) log
√
n− Ln =

sign(µ̂n) + op(|µ̂|r)
|µ̂|r

,

yielding

sign(µ̂n) |µ̂n|r =
1 + op(|µ̂|r)

sign(µ̂n) log
√
n− Ln

=
1 + op(|µ̂|r)

sign(µ̂n) log
√
n

∞∑
k=0

(
sign(µ̂n)Ln

log
√
n

)k
,

whenever |Ln| < log
√
n, and the probability for this tends to 1. Since µ̂n = oP (1) we conclude

|µ̂n|r =
1

log
√
n

+
sign(µ̂n)Ln
(log
√
n)2

+ oP

(
1

(log
√
n)2

)
.

By symmetry, this yields Assertion (b). It further yields

µ̂n = sign(µ̂n)

(
1

log
√
n

+
sign(µ̂n)Ln
(log
√
n)2

+ oP

(
1

(log
√
n)2

)) 1
r

=
sign(µ̂n)

(log
√
n)

1
r

(
1 +

1

r

sign(µ̂n)Ln
log
√
n

+ oP

(
1

log
√
n

))
.

With the definition of Ln above, we thus obtain Assertion (c).
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